
2. Z. Peradzynski, "Hyperbolic flows in ideal plasticity," Arch. Mech., 27, No. i (1975). 
3. L. A. Galin, Elastoplastic problems [in Russian], Nauka, Moscow (1984). 
4. S. V. Meleshko, "Double waves in an ideal plastic-rigid body with plane strain," Zh. 

Prikl. Mekh. Tekh. Fiz., No. 2 (1990). 
5. V. G. Ganzha, S. V. Meleshko, and V. P. Shapeev, "intermediate calculations in analytical 

studies of differential equations on a computer," Model. Mekh., 3, No. 4 (1989). 

THERMOELASTIC STRESSES IN A PLANE WITH A CIRCULAR INCLUSION IN THE 

PRESENCE OF A THERMAL SPOT OF ELLIPTICAL SHAPE 

L. G. Smirnov and I. I. Fedik UDC 539.412 

The problem of determining the thermostress state of a body during heating by a spot 
occupying a certain domain reduces to a problem of determining the elastic stresses for 
given discontinuities in the displacements on the spot boundary [i]. This latter is equiva- 
lent to the problem of determining the elastic stresses caused by the presence of an inclu- 
sion preliminarily subjected to intrinsic strain and having elastic characteristics as also 
the surrounding medium and then inserted in the hole occupied by the spot domain [2]. Utili- 
zation of the Muskhelishvili method in the plane case permits reducing this problem to a 
standard boundary value problem of elasticity theory for the whole domain occupied by the 
body with altered external forces [2]. When the spot is circular in shape, the solution can 
be found in closed form [3-5]. The solution of the problem of determining the stresses in 
a half-plane for an elliptical spot shape and constant magnitude of the heating AT is also 
written in closed form [6]. This paper is devoted to obtaining such a solution for a plane 
with a circular foreign inclusion for an elliptical spot shape and AT = const. 

Let an elastic plane with a circular foreign inclusion be heated over a certain domain 
D bounded by the contour L from an initial temperature T o for which there is no stress state 
to a temperature T I. It is assumed that the contour L does not intersect the circle L 0 
bounding the foreign inclusion and can be a system of nonintersecting closed contours Lj 

(j = i, 2, ..., n). Without limiting the generality, we will consider the contour L to con- 
sist of two contours LI and L 2 bounding domains Dl + and D2 + lying entirely within and out- 
side the circle L0, respectively. The domain lying between the contours L0 and LI is de- 
noted by D I- and the domain between L 0 and L a by D2-. It is known [2] that the stress state 
that occurs is equivalent to that which occurs in inclusions occupying the domain Dj + first 

subjected to intrinsic strain and from the same material as its external medium, and then 
installed in holes with the contours Lj (j = i, 2 ..... n). 

Let us assume the center of the circular foreign inclusion of radius R 0 to be at the 
origin of the x, y plane, and pj, vj, ~j to be the shear modulus, Poisson ratio, and coeffi- 

cient of thermal expansion of the materials of the foreign inclusion (j = i) and its exter- 
nal medium (j = 2). We use the Muskhelishvili method to find the stress state. Considering 
that an ideal contact holds on the common boundary of the inclusion with the medium, the con- 
ditions of equality of the normal and tangential stresses as well as the presence of a dis- 
placement jump on the interfacial lines of the media caused by the intrinsic strains are 
written in the form 

r q- t~po'(t) + ~ o  (t) = ~p-(t) q- tcp- ' ( t )  § r  (t) + C~, 

( •  (t) - -  t ~ o ' ( t  ) - -  ~ o ( t ) ) / p ~  = ( •  - - t  r  - -  ~2- (t))/~t~ (t ~ Lo); 

~+ (t) + t~o (t) + ~,~ (t) = ~-j(t) + t~o (t) + ~ ( t )  + G ,  

•162 + (t) - -  t~+ '  (t) - -  ~+( t )  = •  - -  t ~ o '  (t) - -  ~ o  (t) + 2~qg~ (t) (t ~ L~); 

(1) 

(2) 
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~ +  (t) + t~+" (0 + ~+ (t) - -  ~ -  (t) + t~-'(t)  + ~-(t)  + c~, 

• - t ~ + ' ( t )  - ~ + ( t )  = •  (t) - t ~ - ~ ( O  - ~l~-(t) + 2~t~g~ (t) (t ~ L.~). 

( 3 )  

Here ~$(t), ~(t) are the boundary values of functions holomorphic in the domain D• +, ~$(t), 

~(t) are boundary values of functions holomorphic in the domain D1-,'~+(t), ~(t) in the do- 

main D= +, ~-(t), ~-(t) in the domain D~- (t = x + iy); ~j = (3 - vj)/(l + vj) and • = 3 - 

4vj in the cases of the plane stress and plane strain states, gj(t) = uj + ivj are displace- 

ment jumps on the lines Lj (j = i, 2). It is easily seen that the constants Cj (j = i, 2, 

3) can be included in the desired functions and consequently, we shall set Cj = 0 (j = i, 2, 
3) [2]. 

As is shown in [2], by using conditions (2) and (3), the functions %(z), ~0(z) and ~(z), 

~(z), equal to ~(z),~(z) for z e D~ • and ~• ~• for z ~ D= • can be represented as 

90 ( 0  = ~1 (Z) + ~ 1 .  (Z), ~0 (Z) = ~ l  (Z) + ~1$ (Z); 

~(z) = %(z) + %, (z), ~(z)  = r + ~ ,  (z), ( 4 )  

where the functions %(z), ~1(z) and %(z), ~2(z) are holomorphic, respectively, inside and out- 
side L0 and the following representation holds 

= ~ti ol g,i (t) dt 
~ ,  (z) ~ (~ + ~) ~ t - ~  ' 

p~ S ht(t) dt ~ ,  ( z )  = a~ (~ + ~) ~ ~ ' 

( s )  

where 

hj (t) _- - gj (t) - t%-) (t) (] = ~, 2). ( 6 )  

Substituting (4) into conditions (i), we obtain 

I ! 
% (t) + t% (t) + ~,  (t) = % (t) + tr (t) + ~ + ]~ (t); 

t p 
• (t) - -  tq~ (t) - -  ~2~ (t) = ? ( •  (t) - -  t~2  (t) - -  ~2  it)) + ]2 (t), 

( 7 )  

( 8 )  

where 

v = ,%/~ ,  L (t) --- p~ (0  - p~ (t), /~(t)  = -~q~ (t) - q~ (t), 
i 

p~ (t) = q~j, (t) + tq~j, (t) + ~ j ,  (t), qj (t) = • (t) - t~ ] ,  (t) - ~ j ,  (t) 

(i = t, 2). 

( 9 )  

The problem therefore reduces to finding the holomorphic functions ~i(z), ~j(z) (j = I, 2) in- 

side (j = i) and outside (j = 2) the circle LQ (Itl = R 0) according to the conjugate condi- 
tions (7) and (8). Taking into account that the equality t = R02/t holds for t e L0, it is 

easily seen that the functions %(0, ~1(t) and_ %(0, ~p2(t) are the boundary values of functions 
holomorphic, respectively, inside and outside the contour L0. Indeed, since %(z),~h(z ) are 
holomorphic inside L 0 while %(z), ~(z) are holomorphic outside L0, then ~7(z) and ~/(z) (j = i, 
2) are represented in the form 

meaning 

~ ~o 

% ( 0  = E a n  zn, @~(z) = ~_~ b~z ~. ~2(z) = ~c~ , z -L  ~2( z )=  ~ d . z  -~, (10) 
0 0 0 0 

q/l (t) -~ nant ~-1 nanno ~ , *l  (t) = E bnRo t , 
0 0 0 
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2 2 ~ ]  - r , - - 2 n - - 2 ~ n + l  "~ l:~--2nt n 
(p~(t)  = - -  ne~ t  - ~ - ~ =  - ~ n c n n o  ~ , r  . ~ o  ~ �9 

0 0 0 

r z 
Hence, it follows that Tl(t), ~ ( t )  and T2(t), ~2(t) are boundary values of the functions 
--! 2 --t 
TI(Ro/z), ~i (R~/z) and ~2(R~/z),~2(R~/z), that are holomorphic outside and inside L 0 (F(z) = 

F(z), differentiation is with respect to the variable $ = R02/z). Multiplying both sides 
of (7) and (8) by the coefficient i/(2~i(t - z)) and integrating along L 0 with the above- 
mentioned from (9) and (I0) taken into account, we obtain for the z lying within the circle 

-- --t 2 

~(z) + ~ + 2~ = ~0 + ~2 (R0/~) + ~ (~/~) +/t (~); (11) 

~,~i (~) -~ - ~, = v (~0 - z~ (~/~) - ~2 (R~/~)) + ~$ (~I, 
( 1 2 )  

where 

I ~ / j ( t ) d t  !+ (z )=~  t - ~  �9 ( 1 3 )  
L i 

We have from (ii) and (12) 

�9 i (~ )  = [(/? (~) + v f f  (~)) + v ( i  + .~) ~o + ( I  - -  v) ( ~  + A ~ ) ] / ( ~  + v). (14) 

Then 

Analogously we write for z lying outside the circle 

~ (W~) + ~i (Wz) = ~2 (~) - ~o +/~ (~); 
--t 2 -- 

- ~ (R~/~) - r (R~/z) = v (.~ (~) - .=~0) +/; (~). 

~ (~) = - ( / 7 - ( ~ ) + / T  (~) - (,i + -2) ~o)/(i + v• 

(15) 

(16 )  

(17) 

[fj(z) is understood to be the integral in the right side of (13) for z outside the circle]; 

~i (z) = - R~ (~'~ (z) - a,)/z + ~2 (R~/~) - ~0 +Tt (n~/z); (18) 

(19 )  

The constant c o in (14)-(17) can be set equal to zero since the problem with conditions 
(7) and (8) conserves the arbitrariness in determining ~2(z) [or ~02(z)] to the accuracy of 
an additive constant. Differentiating both sides of (14) twice and z = 0 we find 

ao = F" (0)/(2 (~, + V)) (F  (~) = / +  (~) + V/+ (~)). 

For a single differentiation of both sides of (14) at z = 0 we obtain an equation to find 

a:l 

al ---- (F'(0) -6 (i - -  7)(• + ? ) - lF ' (0 ) ) / ( i  -6 (7 - -  i)2(• -6 7)-2). ( 2 0 )  

For z = 0 we have a.2 = a0(• + ~) - F(0)/(2(I - y)) from (14). 

Now, let us examine the particular case when the contour Lj is an ellipse with semi- 

axes a j ~ bj ~ and angle 8j between the directions of the semiaxes aj ~ and the x axis, while 

Tz(J) - T0(J ) = AT(J) = const. It is easy to see that 

g i ( t )  = - - e  i ( t  - -  z~), h ( t )  : --e~(zff2t), ej : c z t k j A T ( J ) ,  ( 2 1 )  

where zj is the center of an ellipse with contour Lj, kj = 1 and kj = 1 + vj/l - vj in the 

plane stress and plane strain states cases, respectively. Taking account of (6) and (21) 
we find the expressions for ~1,(z) and ~z,(z) that are needed to calculate the stresses 
from (5) : 
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~td ~g5(t) d t { o  
~ ,  (z) - ~ (~ + • o ~ - - 7  = 

L o 

Vj ~hd (t) dt 
q~s, (z) - ~ (~ + ~ )  .; t -  z 

L o 

( ~ = 2s~FoS/(l + • 

~s (z - +) 

= l - -  ~ + 2~/(z) 
(2[J~I (z) 

i (2:) ~ /  ~ t ' ~  
= F-z-;_ ~)" 

L o 

(z~D~-), 
(z ~ DT); 

( ~ D ? ) ,  
(~ ~ D/) 

( 2 2 )  

(23) 

To evaluate I(z) we use the conformal mapping function for the exterior of the ellipse Lj 

onto the exterior of the unit circle Y0 in the ~ plane which has the form 

= ++ (~) = ~+ (~ + m+~-9 d ~+ + + ~+ = (a0 + ~)/2, .~ _ ~ ~0 

Then taking account of the equality ~ = i/o for o + Y0, 

l ( z )  = 2 ~  j t - ~  2m ( ~  _ (~ _ ~) e-~O~o/n~ + ,.,~) 
LO ~0 

(24) 

Since the equation o 2 - (z - zj)e-iSjo/Rj + mj = 0 is the entry for the conformal mapping 

of the z plane with an elliptic hole on both the exterior and interior of the circle I~I = 
I, then its roots o I and o 2 lie inside and outside the circle I~I = i. Using residue theory, 
we obtain from (24) 

--210' , + : / o  - 
(e- :~~ (z -- z:) 

(z ~ D 7 ) ,  

( , ~  D?) 
( 2 5 )  

{the branch satisfying the condition lira l(z)=0) is selected . Taking account of (22) and 

(23.) we find from (9) 

.11 (t) = ~2, ( t )  - -  *~ ,  (t), /~ (t) = ' 1 ,  (t) - -  ?q)2, (t). ( 2 6 )  

Since ~1,(z) and ~2,(z) are, respectively, holomorphic in the domains De + + D 2- and DI + + 

Dl- , the functions ~bl,(t) and @2,(t) are boundary values of the functions {1,(R02/z) and 

~2...(Ro=/z) that are holomorphic in the domains DI + + D I- and De + + D2-. Utilizing (13) and 
(2g) we have 

/;- (z) = - -  G ,  (R~/z) ,  /~ (z) = ? G ,  (R~/z)  (i z I > Ro), 

[1  + (2:) = - -  ~1 ,  ( * ~ 0 / 2 : ) ,  f ;  (Z) = ~ 1 ,  ( n ~ / Z )  ( I  Z I < lZ{O) �9 ( 2 7 ) 

Differentiating the equalities (14), (17) and (18), (19), with (27) taken into account, we 
obtain 

! - - t  ~ (~) = (t - -~)/(• + v ) ( , ~ ,  (R~/2:) + 7~), 

~; (~) = (~ - v)/(• + v) ~TL (RU2:), 
r 2 t --r 2 t 

'r (2:) = R o ~  (2:)/~ - Rob~ (~)/~ + ~ (Ro/~)  - R o ~  ~ + ,~ ,  (~); 

(28) 

G (2:)= (i - v)/0 + w~) G. (R~/z), G (z) = (i - v)/O + v• (RUG 
t �9 2 P 2 2 '+ --' 2 t 

r (2:) = R o ~  (2:)/z - R o ~  (2:)/2: + ~n ( Ro/2:) - R~,~/z~ + ,~, (~). ( 2 9 )  

The derivatives - '(R02/z) and ~j, ~ 0 ~j, "[R 2/z) in (28) and (29) are found from the formulas 
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~'~, (~/~) =~r ( ~ o % ) / ~  = (d , ; ,  ( ~ / ~ ) / ~ ; )  ( s  = 
2 - -  t - ~or  ( n J ~ ) ' d A  = r (/7o/Z)~ ( - ~ / ~ ) ( ~ / ~ ) ( ~ / ~ ) =  

- , ,  ~ ~ ~ ' ~ n~or (~U-~)'Wz , (~ n U ~ ) .  r (~/~) = B~o~.  ( n o / ) d o  + = 

(30) 

It follows from (14) 

from which 

that 

~ (~U~)=~, (~/~)=(~-~)I(~ + ~)(,1, (~)+ ~1~),  

~ ( ~ U ~ )  = ( t  - -~1,,(~<~ + ,el ( , ~ ,  (~) ~ o % ~ )  �9 (31) 

We obtain from (17) in an analogous manner 
# 

~'~ ( ~ I ~ )  = (~ - ~)/(~ + ~ )  ~ ,  (z). 

The coefficient a~ is found from (20), where F(z) = (i - ~)~j,(R0a/z). Taking account of 

(23) and (25) the functions ~j,'(z), ~j,'(R02/z), ~j,- "(R02/z) have the form 

, / ~  [ ~ _  ( = _  ~ ) 1 ( ( ~ _  = ~ ) ~ - ~ ) ~ 1  ( = ~ D ; ) ,  
~pj, (z) = tXi~i ( z ~ D:+ ); (32)  

- '  r (no%) = - - ~ o ~ [ ~ - ( ~ U ~  _ z ~ ) l ( ( p ~ / ~ -  ~;) ~ _ . ~ ) ~ , ' ~ ]  ~ - ~ ;  (33) 

r ( n U z )  = -@~ [~n~ (~ - ( ~ 1 ~  - - ~ D I ( ( ~ U ~  ~ ~ . ~ , . ~  ~-~ 2 -  _ - "  - ;, - w 2  + ; ~ o ~ , s , / ( ( n o l z _ z s )  ~ y~)~/')z-!)]z-~. (34) 

Here 6j = (mj -mj-1)e-2i0J; yj2 = 4mjRj2e2i0j; Xj = 2mje-2i0j while [zl < R0 for j = I, 

[z[ > R 0 for j = 2. In the case when Lj is a circle, by passing to the limit as mj + 0, we 

have from (32)-(34) 

abj, (z) __ {2Of$itT~ ( z - -  zj)-2 ( z ~ DT), 
( z ~ D + ) ,  

- '  = 2~j/7oRs (R~- -  zzj) -2, ~ ,  (R~lz) = 2 2 -  @~noS% ( R~ - = 0  -o 

( j  = 1, 2 ) .  

The desired stresses are found from the formulas [2] 

a ~  ~- %~ = 4Re(%(z)),  

~yy - , ~  § 2 ~ - ~  = 2 ( z % ( z )  -f- ~ j ( z ) )  (] - 1, 2); 
t t r r 

r (z) = r (z) + % (z), T j  (z) = abj, (z) + ~bJ (z) (] = 1,: 2). 
(35) 

Taking account of (30), (31), and (35), it is easy to obtain a solution from (28) and (29) 
for the case when the circle degenerates into the line z = 0. Indeed, the functions %(z), 

Tj(z) are converted upon substitution of the coordinates z = z' - R0 according to the formu- 

las [2] 

~ j  (~) = �9 (~' - Ro), % (~) = ~ J  (~' - Ro) - / 7 0  r (z' - / 7 0 ) .  

L e t  us  u s e  t h e  n o t a t i o n  % ( z )  = C j ( z ' )  and S j ( z )  = % ( z ' ) :  

~ (z') = c j  (~' - Ro) = z j ~ . ,  ( R U ( ~ '  - Ro) )  + ~ ,  (~' - Ro) + 

+ z~ (2 - ]) ~1 = - b~j~@oV(/7o - z') 2 • 
" 2 2 11'~ 

• [~ - ( R U ( z ' -  n0)- ( ~ -  no) ) / ( ( /TW(~' -  Ro) - z' + no) - ~;) ] + 
+ q~}, (z' - - /70)  + lj (2 - -  ] ) a  I (1 = ~, 2), 

(36) 
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~r8 \ 

N,  

i 

v y _ "~zs 

~ . . ~ . _ j .  - -  ~ ~ ~ 

o 

-2 

Fig. 1 Fig. 2 

Here 

~ = ( l  - v)/(• + % z~ = (v - i ) / ( i  + vu2), 

(z~DT) ( ] = i ,  2). 

Since F(z) = (i - y)~z,(R02/(z ' - R0)), then by using (20), (23), and (25) we write 

lim f(z)=F(z')=0, which means a z = 0. Passing to the limit in (36), we obtain 
RO-+oo 

~ ( z ' ) =  lira ( D i ( z ' - - R o )  / ~ 5 ~ ( i - - ( z '  - ' - ' - -  = _ _ ~;)/((~ ~ )~-  v ~ )  ~ )  + ,~, (~'),, 
~O-~Zo  

~ v  - - 2  - -  " ' l  I 2 = - - ~ + ~}', (~') (] = ~, 2). 

Analogously 

~ j  (z')  = l i m  {~Fj (z' - -  Ro) - -  R o O  j (z' - -  Ro) } = 
H 0--)oo 

= 1 ~  {Ro~ (z ' - Ro)-~  ,~j ( z ' -  R o ) -  R ~ ( ~ ' -  Ro)-~  ~ ; ( ~ ' -  G )  + 
R 0 ~ o o  

t t ! 
+ l(3-~)q~(3-j), (z '  - -  Ro) + ~ j ,  (z '  - -  Ro) + ~ (3 - J ) ,  (z'  - -  Ro) - -  R o ~  (z - -  Ro) t = 

= O~ (z') + (i(~_j) + t) ~(~_;) (z') + % ,  (z') (j = 1, 2). 

The domains x > 0 and x < 0 correspond to the domains Dz + + D z- and D2 + + D2-. ~en Lj is 

a circle we find by returning to the old notation (z + z', (0, ~) § ($, ~)): 

(I) i (z) = bj ( ( z - -  z j )  - 2  - -  d j /2  ),  (I)j (z) = - -  2bj ( z - -  z j )  -'~, 

�9 j(~) = bj  G (~ - ~ )  -~ - (~ - 7j)-v2) + 

§ (G-;) § t)c(3_j,(z, --  7~) -~ § c;dj (z - -  zj) -~, 

{10 ( z ~  D~-), 
cj = 4 , j ~ ) ~ / ( l  + • bj = lSj,  dj = (z ~ DT) (] = t ,  2). 

Graphs of the stresses are represented in Figs. 1 and 2 in dimensionless form in conformity 

with the formula Oks = Oks + • on the outer and inner boundaries of 

the contours L 2 and L 0 in the case when the contour L 2 is the circle z - z 2 = R2e i8, the con- 

tour L 0 is the line x = 0 and ~i = 0. The stresses Orr , o80 , and Tr8 (see Fig. i) are com- 
puted from the formulas 

%~ § aeo = 4Re (~'(z)), 

%0 -- ~r~ + 2i~o : 2e 2i~ ~ " ( z )  + ~'(z)) 
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(e 2i~ = z2r -2) and Oxx, Oyy, ~xy (see Fig. 2) according to the same formulas for ~ = 0. The 

computations were performed for • = • = 2; y = 3-z; 3; z 2 = 1.001R 2. The solid lines in 

Figs. 1 and 2 are 7 = 1/3, the dashes are 7 = 3, and the superscripts j = 0, i, 2 correspond 
to the domains D2 +, D2- , DI-. 
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VIBRATIONS OF AN ELASTIC ORTHOTROPIC LAYER WITH A CAVITY 

A. O. Vatul'yan and A. Ya. Katsevich UDC 539.3 

In connection with the development of vibrational seismographic prospecting and defec- 
tometry at the present time, problems of analyzing wave fields in an elastic medium with 
cavities, cracks, and inclusions became extremely urgent. Let us note that certain mate- 
rials being tested are anisotropic (austenite class steels, composites, soils) which re- 
quires an appropriate mathematical model that takes account of the anisotropy of the mechani- 
cal properties. 

I. The steady-state antiplane waves are investigated in an orthotropic elastic layer 
of thickness h with a cylindrical cavity whose directrix is a smooth closed curve Zo. We 
consider that the vibrations in the layer are excited by a tangential load p(x I) applied to 
the boundary x 3 = h of the layer. The axes of elastic s)nnmetry agree with the coordinate 
axes, the component u 2 = u(xz, x3)exp(-i~t) of the displacement vector components is differ- 
ent from zero while similarly 012 = c66u, z, o23 = c44u,3 from the stress tensor components. 
After extraction of the time factor the boundary value problem has the form 

c~6u:m + c~4u,33 + po)~u : O, 

x3 : h, c4~u,3 : p(x i ) ,  x3 : O~ u : O, 

( x .  x~) ~ lo, c6~u,~nl + c~u,~n~ : 0 (1.  i )  

(nz, n 3 are components of the unit vector normal to the curve s external relative to the 
domain occupied by the elastic medium). Formulation of the problem is closed by the radia- 
tion condition for whose formulation the limit absorption principle is used. 

We introduce an auxiliary boundary value problem for the function U(xz, x3, gz, gs) 
into the consideration 

c~6U,~ § c~U~,33 § p~o~U : - - 5 ( x l  - -  ~1, x~ - -  ~ ) ,  

x3 : h, U,3 : 0, x3 : O, U : 0 .  (1.2) 

The solution of the problem (1.2) is constructed by using a Fourier integral transform within 
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