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THERMOELASTIC STRESSES IN A PLANE WITH A CIRCULAR INCLUSION IN THE
PRESENCE OF A THERMAL SPOT OF ELLIPTICAL SHAPE

L. G. Smirnov and I. I. Fedik UDC 539.412

The problem of determining the thermostress state of a body during heating by a spot
occupying a certain domain reduces to a problem of determining the elastic stresses for
given discontinuities in the displacements on the spot boundary [1]. This latter is equiva-
lent to the problem of determining the elastic stresses caused by the presence of an inclu-
sion preliminarily subjected to intrinsic strain and having elastic characteristics as also
the surrounding medium and then inserted in the hole occupied by the spot domain [2]. Utili-
zation of the Muskhelishvili method in the plane case permits reducing this problem to a
standard boundary value problem of elasticity theory for the whole domain occupied by the
body with altered external forces [2]. When the spot is circular in shape, the solution can
be found in closed form [3-5]. The solution of the problem of determining the stresses in
a half-plane for an elliptical spot shape and constant magnitude of the heating AT is also
written in closed form [6]. This paper is devoted to obtaining such a solution for a plane
with a circular foreign inclusion for an elliptical spot shape and AT = const.

Let an elastic plane with a circular foreign inclusion be heated over a certain domain
D bounded by the contour L from an initial temperature T, for which there is no stress state
to a temperature T;. It is assumed that the contour L does not intersect the circle L,
bounding the foreign inclusion and can be a system of nonintersecting closed contours Lj

(j =1, 2, ..., n). Without limiting the generality, we will consider the contour L to con-
sist of two contours L; and L, bounding domains D1+ and D2+ lying entirely within and out-
side the circle L,, respectively. The domain lying between the contours L; and L; is de-
noted by D;” and the domain between Ly and L, by D,”., It is known [2] that the stress state
that occurs 1is equivalent to that which occurs in inclusions occupying the domain Dj+ first

subjected to intrinsic strain and from the same material as its external medium, and then
installed in holes with the contours Lj (3 =1, 2, ..., n).

Let us assume the center of the circular foreign inclusion of radius R, to be at the
origin of the x, y plane, and His Vi, 0§ to be the shear modulus, Poisson ratio, and coeffi-

cient of thermal expansion cf the materials of the foreign inclusion (j = 1) and its exter-
nal medium (j = 2). We use the Muskhelishvili method to find the stress state. Considering
that an ideal contact holds on the common boundary of the inclusion with the medium, the con-
ditions of equality of the normal and tangential stresses as well as the presence of a dis-
placement jump on the interfacial lines of the media caused by the intrinsic strains are
written in the form

oo () + 190 () + Vo () = o) + 1o @) + @) + Cus (1)
(“1@0 (£ — tog (t) — Py (¢ )/Hl —(t) —t ¢~ ( ) — T (D), (= Ly);
O () + tod (8) + Vi (@) = G5 (@) + 0s (1) + Wo (1) + Cas (2)

%P0 () — 19 (£) — Pi (£) = %390 (£) — g (B) — o (1) + 2migy (1) (= Lo);

Podol'sk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No.
1, pp. 88-95, January-February, 1991. Original article submitted May 24, 1989.
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ot @) + 10T (@) + YT @) =@~ (&) + 1o~ () + v() + Cy (3)

% GHO) — 1T (@) — () = %y~ () — 19— () — $—0) + 218, () (L= Ly).

Here qﬂ‘@% wj(ﬂ are the boundary values of functions holomorphic in the domain D;t, ¢ (2),
P, (t) are boundary values of functions holomorphic in the domain D,~, ¢*(t), P+(¢#) in the do-
main D,t, ¢-(f), v-(f) in the domain D,” (t = x + iy); ®y = (3 - Vj)/(l + vj) and #j = 3 ~
Avj in the cases of the plane stress and plane strain states, gj(t) = uj + iVj are displace-
ment jumps on the lines Lj (j =1, 2). It is easily seen that the constants iy (=1, 2,
3; ?;n be included in the desired functions and consequently, we shall set Cj =0 {(j=1, 2,
3

As is shown in [2], by using conditions (2) and (3), the functions gy(z). ¥,(z) and ¢(2),
¥(z), equal to @5(@,¢$(@ for z & DT and ¢=(z), v=(z) for z € D,t can be represented as

@, (3) = ¢, (2) + 1, (2), Yo () = Py (2) + Py, (3);
C(@) =05 + o, (2), V() = by (2) + Pay (2), (4)

where the functions ¢,(z), {,;(z) and @.(z), ¥,(z) are holomorphic, respectively, inside and out-
side L, and the following representation holds

(t) dt
(Pj*(z) 1_{_% 5 —z
i) J 1 (5)
ki (1) dt
Pix (2) = nz(1+x]) St——z’
where
hit) = —g;(0) —tg; (1) (=1, 2). (6)
Substituting (4) into conditions (1), we obtain
01 () + 101 () + B0 = 0 (1) + t93 () + T2 0 + 11 (0); (1
1y (1) — 191 (8) — B ) = ¥ (o5 () — 105 (1) — B, (D) + F 0), (8)
where
Y= /iy f1(8) = pa(®) — p1 (s o) = V4. (1) — . (D)
i (1) = @i (&) + 105, (6) + Vi (B ¢5 (1) = %035 (1) — *() Pix (£) (9

The problem therefore reduces to finding the holomorphic functions ¢;(z), y;(z) (j = 1, 2) in-
side (j = 1) and outside (j = 2) the circle L, ([t = R,) according to the conjugate condi-
tions (7) and (8). Taking into account that the equality t = R,?/t holds for t & L,, it is
easily seen that the functions @,(2), ¢(¢) and . (2}, y,(f) are the boundary values of Ffunctions
holomorphic, respectively, inside and outside the contour L,. Indeed, since ¢,(3), ¢,{z) are

holomorphic inside L, while q,(z), },(z) are holomorphic outside Ly, then ¢;(z) and $;(z) (j = 1

3
2) are represented in the form

() = Saam, bl = Db @) = Ve () = R (10)

meaning

@1 () = Dna "t = %ﬂgnﬂgn_2fn+1s Py () = %
0
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00 o

) = — Dned = — DnenR T, () = DduR"
0

0 0

Hence, it follows that Q{@L P, (¢) and 0, (), $,(¢) are boundary values of the functions
o1 (R3/z), ¥, (R3/z) and g, (RY/z), ¥, (R}/z), that are holomorphic outside and inside L, (F(z) =
F(z), differentiation is with respect to the variable £ = Ry?/z). Multiplying both sides

of (7) and (8) by the coefficient 1/(2ni(t — z)) and integrating along L, with the above-
mentioned from (9) and (10) taken into account, we obtain for the z lying within the circle

Py (2) + ‘712 -+ 222 =, + ZEE; (Rg/z) + Ez (Rg/z) + ff (2); (11)
%39, (3) —_dlz - 252 =79 (”200 - Z@l (B(ZJ/:) - Ez (R?J/Z)) + fg— (2), (12)
where
@)= %5 (13)
L;
We have from (11) and (12)
0:(8) = [(/F @ + v @) + v (L + %) ey + (1 — ) (@2 + 20,) [/, + ). (14)

Analogously we write for z lying outside the circle

29y (R5/2) + 9y (R2/z) = @y (2) — ¢y + 11 (2); (15)

_‘Z(Pl(RO/Z) ‘Pl (R /Z)—?(“2(P2(Z)’—”co)+f2 (2). (16)

Then
Z)—'—(fl )+ [z (Z)‘“(i‘*‘%z)co)/(1 V¥q) (17)

[f}(z) is understood to be the integral in the right side of (13) for z outside the circle];

P (2) = _RO(CPi(Z —a)/z+ @ (R3/2) —ag + 11 (R3/2); (18)

s (2) = — R} ((PZ - 01)/2 + (P1 (Bo/z) - ao —fT (Rg/z). (19)

The constant ¢, in (14)-(17) can be set equal to zero since the problem with conditions
(7) and (8) conserves the arbitrariness in determining ¢,(z) [or ¥,(z)] to the accuracy of
an additive constant. Differentiating both sides of (14) twice and z = 0 we find

ay=F (02, 4+ 7)) (F@) =73 @ + v (2).
For a single differentiation of both sides of (14) at z = 0 we obtain an equation to find
a3

= (F'O) + (1 = V)0 + VTFONL + (¢ — %64 + 7)) (20)

For z = 0 we have a, = ao(x; + v) — F(0)/(2(1 - v)) from (14).

Now, let us examine the particular case when the contour Ly is an ellipse with semi-
axes aj°, bj° and angle 65 between the directions of the semiaxes aj° and the x axis, while

Tl(j) - To(j) = aT(3) = const. It is easy to see that
gi(t) = —e; (t— zp), A(t) = 'fej(z_}_ﬂ)’ e; = ak; AT, (21)

where zj is the center of an ellipse with contour Lj, kj = 1 and kj =1+ vj/l - V3 in the

plane stress and plane strain states cases, respectively. Taking account of (6) and (21)
we find the expressions for ¢, (z) and ¥;,(z) that are needed to calculate the stresses
from (5):
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b (ed (—mz—-zj) (ze D),
0

@iy (8) = aui (1 %) A t—z (z e D}-'); (22)
o S‘h (at _[—piz+ 2,0 (z) (ze= DY),
P H—x .0 28,1 (2) (ze= D7) (23)

. . 1 tdt
(ﬁj = 2e;u;/(L + %3); L ()= i )t —z)'

To evaluate I(z) we use the conformal mapping function for the exterior of the ellipse L
onto the exterior of the unit circle v, in the { plane which has the form

3 o
2= 0;(0) = B; (L + mt™!) e + 5 ( ={a+ )2 e ;’er;)

Then taking account of the equality 6 =1/c for ¢ & Yo

/27 T2m
LO Yy

1 ‘S' tdt e—ziejj' (mo —7 ech/H —1) (1—m 5*9)

<Z)—>m (0 —(z—z;)e e~ ®ig/R . ;- mg) (24)

Since the equation ¢? — (z - Z3 )e“iejo/R + my = 0 is the entry for the conformal mapping

of the z plane with an elllptlc hole on both the exterior and 1nter10r of the circle IC[
1, then its roots o; and o, lie inside and outside the circle [CI 1. Using residue theory,
we obtain from (24)

[(z): e“'ZiGj(mJ-—.mJ (’7‘—2]"“]/4———2] —H?’LJR; 218 )/2 (ZED )

(25)
e m; (z — z;) (z= D) )

{the branch satisfying the condition Hn1](z)==0) is selected . Taking account of (22) and

{ z[-> oo

(23) we find from (9)
1) = Pop(8) — a1, )y Jo (8) = V1 (F) — Vihay (£)- (26)

Since y;,(z) and y,,(z) are, respectively, holomorphic in the domains p,¥ + D,” and D, +

D;”, the functions ¢,;,(t) and ¢,,(t) are boundary values of the functions @1*(R02/z) and

@2*(R02/z) that are holomorphic in the domains D,* + D;” and D,* + D,”. Utilizing (13) and
(26) we have

fi (@)= “‘11)2* (Ro/z) f2 (2) = V‘sz (RZ/Z) 1ZII>RO)’
IT@) = — iy (RY2), 5(5) =, (RY2) (12]<R,). (27)

Differentiating the equalities (14), (17) and (18), (19), with (27) taken into account, we
obtain

cP:,L (2) = (1 —y)/(», + V)(E;* (Rg/z) - El)v

, A (28)
@1 (8) = (1 — V(%; + ¥) ¥r, (BRE/2),
¥y (2) = Ry (2)/2 — R29} (2)/z + 92 (R3/2) — Riay/z* + by, (2);
92 (2) = (L — /(1 + y25) Way (B2/2), @2 (2) = (1 — V)AL + yr) $u,, (R3/2),
Vs (2) = Ry ()22 — R2qy (3)/2 + @1 (RY/z) — Riay/2 + ¥y, (2). (29)

The derivatives @j*'(Roz/z) and @j*”(Roz/z) in (28) and (29) are found from the formulas
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B (RE/2) = dvy, (Refz)]dz = (d, (Re/z)/dz) (dz/dz) =
— Vi (Re2)a(— B2/ (defda) (dz/dz) = — Riws, (R3/2)a/2, (30)
B (RYz) = 2R3, (Raj2)e/2 + Rivs, (BE/2)0/2 (n = Ri/z).

It follows from (14) that

B (BY/2) =9, (Ba/7) = (1 — ) floa + W) ($1. (2) + @, F5/),
from which
Gy (RY/z) = (1= W)/l + ) (1. () — @, B3/22). (31)
We obtain from (17) in an analogous manner
7o (B/z) = (v — DI + %) 2, (3).

The coefficient a; is found from (20), where F(z) = (1 — Y)@j*(Roz/z). " Taking account of
(23) and (25) the functions Wj*'(z), @j*'(Roz/z), @j*”(Roz/z) have the form

§:; 11— (2 — 2/ (2 — 22 —¥})"?] (2= D7),
AiB; (z= DF);

Vi (RY2) = — 5,3, R3 [ — (B2 — 2;)/((RS/2— 2;)* — 45)"*] = (33)
Vi (BY2) =55 [283 (1 — (B2 —72,) ) (Rz — 5)° — )" + R}/ ((Bifz— ;)" —vi)** a1)] 57 (34)

Here Sj = (mj _ m,'l)e_ziej; sz = AijjZeziej; )\j - ije"Ziej while lzl < RO for j - l’

J
[z[ > R, for j = 2. In the case when Lj is a circle, by passing to the limit as mj - 0, we
have from (32)-(34)

20;R3(z—z)2 (2= D),

0 (zesz),

bi, (R/2) = 28, RORS (B — 225) 7%, W, (B3/z) = 4B;RoRSz; (R — 22;) ™"
G=1, 2.

The desired stresses are found from the formulas [2]

Oy + Oyy = 4P'~e(q)j(z))?
Oyy — O - 204y = 2(20,() + ¥;(2) (=1, 2

, , , , ) (35)
D, (2) = ¢y (@) + 0 (2), Wi(s) = Vi @) + ;&) (F=1; 2).

Taking account of (30), (31), and (35), it is easy to obtain a solution from (28) and (29)
for the case when the circle degenerates into the line z = 0. Indeed, the functions @j(z),

Wj(z) are converted upon substitution of the coordinates z = z'! — Ry according to the formu-
las [2]

®;(z) = D — Ry, ¥;(@) = V(2 — Ry) — Ry @; (' — Ry).

Let us use the notation @j(z) = $j(z') and Wj(z) = Wj(z'):

B, (') = D; (5" — Ry) = Lbim (RE/ (& — Bo)) + @i (& — Ro) +
+ 12— ) ay = — L0 Re/(Ry — 2 X (36)
2

w [t — (B — By — (& — R))((Re/(z' — By) — 7 + Ro)* — 7] +
+ @i (@ —RYy+L2—Da (=1,2)
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7 O; /(46 o RE (14 3e,)7)
6&]//"%/"2"’5”*”2)") ‘//( 2fenz 2l

2 -

Fig. 1 Fig. 2
Here

L= {1 — 'Y)/("h + ), b= (v — /A 4 V),
’ ’ — ﬁj (Z &= ‘D;-)"
(2 — B = ¢ (2) —

Py (8" — Ry) = @, (2) 0 (ZE D;-) G=1, 2.
Since F(z) = (1 - Y)il*(Roz/(z’ = Rg)), then by using (20), (23), and (25) we write

lim F(z)= 7 (z') =0, which means a; = 0. Passing to the limit in (36), we obtain
Ro—)oo

@;(s) = lim @;(z' — R)) = — 1;8; (1 — (2 — 2))/((z' — 25)" — vDM2) + iy (&),

R0—>oo

T (o) = v72p0:/ (2 — %) = )P + 5, (2) (=1, 2).

Analogously

Ty () = lim {W;( — Ry) — B, (' — Ry)} =

RO—)co

= lim {Rg (2" — Ry)~2 (P; (2" — Ry — Rg (2" — Ry)—? (P;', (z" —Ry) +

R0—>oc
o Lam iy Bis—ipe (2" — R + Wig (27— Bg) + Wig—ing (&' — Ry) — Ro@; (2 — Ry}l =
= D (z) + (lampy + D Wis—p (&) + Vs (5) (F=1, 2).

The domains x > 0 and x < 0 correspond to the domains D,* + D;” and D,* + D,”. When Lj is
a circle we find by returning to the old notation (z + z', (&, ¥) - (3, ¥)):

Dj(2) = b;((z—2) " —d;2), D;(z) = =2 (z—7%)7"
Vie) = 0;(z; (5 — 2)° — (2 — 2))"%2) +
(- 5y + Dewpls — )7 + ¢;d; (2 — 7)),
\ 1 (ze< D),
e = 48jujRo/(1 + %), by =lic;, d;= 0 (ze D;‘) (=1, 2.
Graphs of the stresses are represented in Figs. 1 and 2 in dimensionless form in conformity
with the formula ckg'(j) = okg(j)/(Aezquzz(l + %,)”%) on the outer and inner boundaries of

the contours L, and L, in the case when the contour L, is the circle z - z, = Rzeie, the con-~

tour L, is the line x = 0 and €, = 0. The stresses Orrs Opg, and 1.5 (see Fig. 1) are com-
puted from the formulas

Grr + Ggp — 4P\e ((P,(Z»v
Opg — Opp ~F 2iT,q = 262 (2¢""(z) + V' (2))
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(e210 = 22r=2) and ogy, Oyys Txy (see Fig. 2) according to the same formulas for o« = 0. The
computations were performed for x; = %, = 25 y = 3%; 3; z, = 1.00I1R,. The solid lines in

Figs. 1 and 2 are y = 1/3, the dashes are y = 3, and the superscripts j = 0, 1, 2 correspond
to the domains D2+, bD,”, D;".
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VIBRATIONS OF AN ELASTIC ORTHOTROPIC LAYER WITH A CAVITY

A. 0. Vatul'yan and A. Ya. Katsevich : UDC 539.3

In connection with the development of vibrational seismographic prospecting and defec-
tometry at the present time, problems of analyzing wave fields in an elastic medium with
cavities, cracks, and inclusions became extremely urgent. Let us note that certain mate-
rials being tested are anisotropic (austenite class steels, composites, soils) which re-
quires an appropriate mathematical model that takes account of the anisotropy of the mechani-
cal properties.

1. The steady-state antiplane waves are investigated in an orthotropic elastic layer
of thickness h with a cylindrical cavity whose directrix is a smooth closed curve 2,. We
consider that the vibrations in the layer are excited by a tangential load p(x,) applied to
the boundary x5 = h of the layer. The axes of elastic symmetry agree with the coordinate
axes, the component u, = u(x;, xj3)exp(~iwt) of the displacement vector components is differ-
ent from zero while similarly o1, = CegUsys Oz3 = Cy,l,3 from the stress tensor components.
After extraction of the time factor the boundary value problem has the form

2, __

Cogliagn T Caallygs + PO°U = 0,
z3 = R, €yl,y = play), 23 =0, u =10,
(21, z3) € ly, CoalhsPy + Cialhrgnty = 0

(1.1)

(n,, n; are components of the unit vector normal to the curve %,, external relative to the
domain occupied by the elastic medium). Formulation of the problem is closed by the radia-
tion condition for whose formulation the limit absorption principle is used.

We introduce an auxiliary boundary value problem for the function U(x;, X3, L1, £5)

into the consideration

ceeUris + €140 055 o0l = —8(z; — &1, 23 — Ea),

2 =h, Uy =20, 23 =0, U = 0. (1.2)

The solution of the problem (1.2) is constructed by using a Fourier integral transform within

Rostov-on-Don. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,
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